Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Sensors eliminate sparking risk in hydrogen vehicles

Alan Flurry

Hydrogen as a clean, renewable alternative to fossil fuels is part of a sustainable-energy future, and very much already here. However, lingering concerns about flammability have limited widespread use of hydrogen as a power source for electric vehicles. Previous advances have minimized the risk, but new research from the University of Georgia now puts that risk in the rearview mirror.

Hydrogen vehicles can refuel much more quickly and go farther without refueling than today’s electric vehicles, which use battery power. But one of the final hurdles to hydrogen power is securing a safe method for detecting hydrogen leaks.

A new study published in Nature Communications documents an inexpensive, spark-free, optical-based hydrogen sensor that is more sensitive — and faster — than previous models.

“Right now, most commercial hydrogen sensors detect the change of an electronic signal in active materials upon interaction with hydrogen gas, which can potentially induce hydrogen gas ignition by electrical sparking,” said Tho Nguyen, associate professor of physics in the Franklin College of Arts and Sciences, a co-principal investigator on the project. “Our spark-free optical-based hydrogen sensors detect the presence of hydrogen without electronics, making the process much safer.”

Not just for cars

Hydrogen power has many more applications than powering electric vehicles, and flammability mitigating technologies are critical. Robust sensors for hydrogen leak detection and concentration control are important in all stages of the hydrogen-based economy, including production, distribution, storage and utilization in petroleum processing and production, fertilizer, metallurgical applications, electronics, environmental sciences, and in health and safety-related fields.

The three key problems associated with hydrogen sensors are response time, sensitivity, and cost. Current mainstream technology for H2 optical sensors requires an expensive monochromator to record a spectrum, followed by analyzing a spectral shift comparison.


Support Franklin College

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.